霍金辐射(英语:Hawking radiation)是以量子效应理论推测出的一种由黑洞散发出来的热辐射。此理论在1974年由物理学家史蒂芬·霍金提出。有了霍金辐射的理论就能说明如何降低黑洞的质量而导致黑洞蒸散的现象。
而因为霍金辐射能够让黑洞失去质量,当黑洞损失的质量比增加的质量多的时候就会造成缩小,最终消失。而比较小的微黑洞的发散量通常会比正常的黑洞大,所以前者会比后者缩小与消失的速度还要快。
霍金的分析迅速成为第一个令人信服的量子引力理论,尽管目前尚未实际观察到霍金辐射的存在。在2008年6月NASA发射了GLAST卫星,它可以寻找蒸发的黑洞中γ射线的闪光。而在额外维度理论,高能粒子对撞也有可能创造出会自我消失的微黑洞。
2010年9月,一项模拟重力研究的结果被部分科学家认为是首次展示出霍金辐射的可能存在与可能性质。然而,霍金辐射仍未被实际观测到。
概述
黑洞是一个万有引力极大的地方,它周围的物质会被重力拉进去。以经典力学上来说,它的引力超强,甚至电磁辐射波也无法逃脱。目前虽尚未了解如何统一重力与量子力学,但远离黑洞之处的重力效应却微弱到依然可以使计算结果符合弯曲时空的量子场论框架。霍金表示量子效应允许黑洞发射精确的黑体辐射。这电磁辐射仿佛被一个温度和黑洞的质量成反比的黑体发出。
举例来说,太阳质量的黑洞的温度仅有60nK;事实上,黑洞会吸收比自身发射要多得多的宇宙微波背景辐射。黑洞的温度吸收与其发射数量相等的辐射。更小的原生黑洞则会散发比自身吸收更多的辐射,因此逐渐失去质量。
在没有霍金辐射的概念以前,物理界有一个难题,就是如果把有很多熵的东西丢进黑洞里,那岂不是把那些熵给消灭掉了吗?但是熵在宇宙里是永增不减的,因此这代表黑洞应该也有很多熵,而有熵的任何东西都会释放黑体辐射,因此黑洞也会释放黑体辐射?但释放的机制又如何?霍金辐射就解释了黑洞释放黑体辐射的机制。根据海森堡测不准原理,在真空中会瞬间凭空且自然地产生许多粒子-反粒子(虚粒子)对,并且在极短的时间内成对湮灭,在宏观上没有质量产生。
雅可夫·鲍里索维奇·泽尔多维奇、雅各布·贝肯斯坦和史蒂芬·霍金等物理学者将量子力学和广义相对论结合起来,结果显示视界的温度并非是零,而且还会发光,虽然极其微弱。这种光就是所谓的“霍金辐射”;当成双成对的粒子——如电子和正电子,或一对光子——在强烈的引力场中被制造出来时,其中一个粒子会坠入黑洞,另一个会逃离,从而产生这种辐射。
如果一个粒子对在黑洞附近形成,由于黑洞的引力场很强,导致配对诞生的正反粒子被扯开,有可能有一个跌入事件视界,而另一个没有,从而被黑洞的引力提升成实粒子。但这样就违反了能量守恒定律,所以另一个粒子的质量一定是从黑洞本身的质量而来——这就是黑洞释放辐射的一个简化解释。