欧拉图是指通过图(无向图或有向图)中所有边且每边仅通过一次通路,相应的回路称为欧拉回路。具有欧拉回路的图称为欧拉图(Euler Graph),具有欧拉通路而无欧拉回路的图称为半欧拉图。对欧拉图的一个现代扩展是蜘蛛图,它向欧拉图增加了可以连接的存在点。这给予欧拉图析取特征。欧拉图已经有了合取特征(就是说区定义了有着与起来的那些性质的对象在区中的存在)。所以蜘蛛图允许使用欧拉图建模逻辑或的条件。
起源历史
图论起源于18世纪,1736年瑞士数学家欧拉(Euler)发表了图论的第一篇论文“哥尼斯堡七桥问题”。在当时的哥尼斯堡城有一条横贯全市的普雷格尔河,河中的两个岛与两岸用七座桥连结起来。当时那里的居民热衷于一个难题:有游人怎样不重复地走遍七桥,最后回到出发点。
为了解决这个问题,欧拉用A,B,C,D 4个字母代替陆地,作为4个顶点,将联结两块陆地的桥用相应的线段表示,于是哥尼斯堡七桥问题就变成了图中,是否存在经过每条边一次且仅一次,经过所有的顶点的回路问题了。欧拉在论文中指出,这样的回路是不存在的。
相关定理
1.无向连通图G是欧拉图,当且仅当G不含奇数度结点(G的所有结点度数为偶数);
2.无向连通图G含有欧拉通路,当且仅当G有零个或两个奇数度的结点;
3.有向连通图D是欧拉图,当且仅当该图为连通图且D中每个结点的入度=出度;
4.有向连通图D含有欧拉通路,当且仅当该图为连通图且D中除两个结点外,其余每个结点的入度=出度,且此两点满足deg-(u)-deg+(v)=±1。(起始点s的入度=出度-1,结束点t的出度=入度-1或两个点的入度=出度);
5.一个非平凡连通图是欧拉图当且仅当它的每条边属于奇数个环;
6.如果G是欧拉图且H=G-uv,则H有奇数个u,v-迹仅在最后访问v;同时,在这一序列的u,v-迹中,不是路径的迹的条数是偶数。