导语:数学是现在一门十分重要的学科,影响了生活的很多方面。但是数学的发展并全是一帆风顺的,在数学史上也爆发过三次比较严重的危机,下面探秘志小编带大家一起了解一下吧。
第一次数学危机
发生时间是公元前500年左右,和精准度有一定的关系。我们平时需要用到的数学知识,只需要精准到一定的程度就可以了。当时古希腊毕达哥拉斯学派认为,世界上所有的数字都可以用[db:tags]/b的形式表示,需要注意的是a、b都是整数。这些数字被称为有理数。但是后来希帕索斯突然发现了一些事情,假设有一个等腰直角三角形,直边都为1,斜边则是(√2),并不满足这个条件,后来这些气急败坏的学者们不愿意承认这个事实,就把希帕索斯扔到海里去了。
不过虽然希帕索斯死了,但是又有更多的学者发现了√2,√3,√5等等。这次数学危机导致纯代数的地位直线下降,而几何学的地位则上升了很多。并且还形成了欧几里得《原本》的公理体系与亚里士多德的逻辑体系,这次数学危机让东西方数学走上了不同的道路。
第二次数学危机
这次危机的发生时间在十七八世纪,主要参与的数学家是牛顿和莱布尼兹,他们和教会的贝克莱大主教是敌对关系。危机的核心问题在于微分中有关无穷小的定义,不管是牛顿还是莱布尼兹对于无穷小的定义都比较粗糙,这和讲究严谨的数学是不相符的。因此遭遇了强烈的抵抗和抨击。
后来柯西用了极限的方法来重新定义了无穷小量,这让微积分更加全面和发展,这也让数学增加了更多的活力。
第三次数学危机
第三次危机的发生时间在十九世纪下半部分,主要对抗的人物是群论(集合论)的创立者康托尔和数学家罗素。当时康托尔创立了著名的集合论,这在一段时间内引发人们的讨论,一部分人对其十分赞扬另外一部分则强烈的攻击。不过在不久之后基本上所有的数学家都接受了,并且发现集合论的强大之处。
但是当集合论的讨论越来越多,在数学界的影响越来越大时,人们发现了一个有关的悖论,那就是有名的罗素悖论。
罗素悖论:S由一切不是自身元素的集合所组成,那S包含S吗?用通俗一点的话来说,小明有一天说:“我正在撒谎!”问小明到底撒谎还是说实话。罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,却可以轻松摧毁集合理论。
当这一悖论提出后,各大数学家都开始提出自己的设想,人们希望通过某些方法对康托尔的集合论进行改造,并且设立新的原则来排除悖论。后1908年策梅罗在自己这一原则基础上提出第一个公理化集合论体系,在被其他数学家改进之后被称为ZF系统,这在很大的程度上弥补了集合论缺陷。
结语:三次重大的数学危机都在一定程度上推动的数学的发展和进步,让其根基更加牢固,应该也算是一件好事吧。
导语:说到数学史上三大重要危机,大家应该都有所耳闻。但是说到第四次可能很多人都摸不着头脑,实际上第四次危机爆发时间至今已经20多年了,不过当时因为网络不发达的缘故,所以不为人所知,下面探秘志小编带大家深刻了解一下。
数学史上的第四次危机
第四次数学危机准确来说是数论,主要是说数论的研究对象不仅仅是数。假如有一门学科分别研究:人、树、花,那么这门学科叫花学,相应理论称为花论,实际上这并不合理,主要讨论的还是第三次数学危机,有关集合论的相关问题。
集合的类名用集合中的元素命名实际上并不十分合理,虽然强行命名没有太大的关系,但是有些地方还是比较奇怪。
无限循环小数是小学数学中的一些知识,在很多时候会出现除不尽的情况,比如
1&pide;9 = 0.111111…(数字1无限循环)
1&pide;3 = 0.333333…(数字3无限循环)
1&pide;1.3 = 0.769230769230769230…(数字串769230无限循环)
无限循环小数具有特殊的性质:
(1)它的循环体至少有一位数字;
(2)它没有最后一位,永远写不到头。
无限循环小数0.999…更是奇怪。现有的数学体系既能证明它等于1,又能证明它不等于1。
我们首先证明无限循环小数0.999…等于1。
数学课本上写着:无限循环小数可以转化为分数
0.111… = 1/9 (1)
两边同时乘以9,得
0.999… = 9/9 (2)
故有
0.999… = 1 (3)
证毕。
现在,我们再证明无限循环小数 0.999… 不等于1。
设 n 是无限循环小数0.999…中9的个数,根据数学归纳法
n = 1时,0.9 ≠ 1成立;
n = 2时,0.99 ≠ 1成立;
n = 3时,0.999 ≠ 1成立;
……
n = ∞时,0.999… ≠ 1成立;
于是
0.999… ≠ 1 (4)
证毕。
这两种办法都是现在数学中比较严谨的证明方法,但是得出的结论却截然不同,互相矛盾,这一悖论被称为“无限循环小数悖论”。这一悖论的出现严重影响了当代数学,并且带来了比较严重的危机,甚至给摧毁当代数学体系。
结语:在人类数学的发展中,一共出现了三次比较严重的危机,每一次都为数学带来了更多的发展,可以预见经过这次悖论,数学将更加发展进步。